目 次

第1章	Cohen-Macaulay Type	1
1.1	準備	1
1.2	Cohen-Macaulay type	4
第2章	The Canonical Module	7
2.1	The canonical module	7

第1章 Cohen-Macaulay Type

1.1 準備

以下, (R, \mathfrak{m}) を a Noetherian local ring とする.

Lemma 1.1.1. $M,N\in\underline{\underline{\underline{M}}}(R),\ I=(0)$ \vdots M とする. そして $f_1,\cdots,f_n\in I$ を an N-regular sequence とすると

$$\operatorname{Ext}_{R}^{i}(M,N) \cong \operatorname{Hom}_{R}(M,N_{n}) \quad where \ N_{n} = N/(f_{1},\cdots,f_{n})N$$

である.

Proof. n についての induction で示す. n = 1 とする.

$$0 \longrightarrow N \xrightarrow{\widehat{f_1}} N \longrightarrow N_1 \longrightarrow 0 \quad exact$$

であるから

$$0 \to \operatorname{Hom}_R(M,N) \xrightarrow{\widehat{f_1}} \operatorname{Hom}_R(M,N) \to \operatorname{Hom}_R(M,N_1) \to \operatorname{Ext}_R^1(M,N) \xrightarrow{\widehat{f_1}} \cdots \quad exact$$

を得るが $\widehat{f}_1=0$ であることから直ちに $\operatorname{Ext}^1_R(M,N)\cong\operatorname{Hom}_R(M,N_1)$ をうる. n>1 として n=1 以下まで正しいとする. $\operatorname{grade}_N M\geq n$ より

$$0 \longrightarrow \operatorname{Ext}_R^i(M,N) \longrightarrow \operatorname{Ext}_R^i(M,N_1) \longrightarrow \operatorname{Ext}_R^{i+1}(M,N) \longrightarrow 0 \quad exact \ for \ \forall i.$$

を見るに $\operatorname{Ext}_R^{n-1}(M,N_1)\cong\operatorname{Ext}_R^n(M,N)$ を得る. $f_2,\cdots,f_n\in I$ は an N_1 -regular sequence であるから induction の仮定を見るに $\operatorname{Ext}_R^n(M,N)\cong\operatorname{Ext}_R^{n-1}(M,N_1)\cong\operatorname{Hom}_R(M,N_n)$ となる.

Lemma 1.1.2. $M,N\in\underline{\underline{\mathbb{M}}}(R)$ として $d=\dim_R M,\ t=\operatorname{depth}_R N$ とすると $\operatorname{Ext}_R^i(M,N)=(0)$ for $\forall i< d-t$ である.

Proof. $\operatorname{Ext}^i_R(0,*)=(0),$ $\operatorname{Ext}^i_R(*,0)=(0)$ ($^{\forall}i$) より $M\neq(0),$ $N\neq(0)$ としてよい. d についての induction で証明する. d=0 とする. t=0 は自明. t=1 のときは $\operatorname{Ass}_R\operatorname{Hom}_R(M,N)=\operatorname{Supp}_RM\cap\operatorname{Ass}_RN=\{\mathfrak{m}\}\cap\operatorname{Ass}_RN=\emptyset$ より $\operatorname{Hom}_R(M,N)=(0)$ である. t>1 として t-1 以下で正しいとすれば, $f_1,\cdots,f_t\in\mathfrak{m}$ を N-regular sequence とし $\overline{N}=N/f_1N$ とおくと $^{\forall}i\in\mathbb{Z}$ について

$$0 \; \longrightarrow \; \operatorname{Ext}^i_R(M,N) \; \longrightarrow \; \operatorname{Ext}^i_R(M,\overline{N}) \; \longrightarrow \; \operatorname{Ext}^{i+1}_R(M,N) \; \longrightarrow \; 0 \quad exact$$

であるから induction の仮定より i < t-1 であれば $\operatorname{Ext}_R^i(M, \overline{N}) = (0)$. $\therefore \forall i < t$, $\operatorname{Ext}_R^i(M, N) = (0)$. d > 0 として d-1 以下で正しいとする. このとき

$$M = M_0 \supset M_1 \supset \cdots \supset M_\ell = (0)$$
 where $M_i/M_{i+1} \cong R/P_i$ for some $P_i \in \operatorname{Spec} R$ $(0 \le i \le \ell - 1)$

をとる. $\dim_R M_i/M_{i+1} = \dim R/P_i$ であるから $\dim R/Q \le d$ となる $Q \in \operatorname{Spec} R$ をとり $\operatorname{Ext}^i_R(R/Q,N) = (0)$ for $\forall i < t-d$ を示せば十分. induction の仮定から $\dim R/Q = d$ としてよい. d > 0 より $Q \subsetneq \mathfrak{m}$. $\therefore \exists f \in \mathfrak{m} \backslash Q$.

$$0 \ \longrightarrow \ R/Q \ \stackrel{\widehat{f}}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} \ R/Q \ \longrightarrow \ R/(f) + Q \ \longrightarrow \ 0 \quad exact$$

より [∃]a long exact

$$\cdots \to \operatorname{Ext}_R^i(R/(f) + Q, N) \to \operatorname{Ext}_R^i(R/Q, N) \xrightarrow{\widehat{f}} \operatorname{Ext}_R^i(R/Q, N) \to \operatorname{Ext}_R^{i+1}(R/(f) + Q, N) \to \cdots$$

そして $\dim R/(f) + Q = d-1$ であるから仮定により $\forall i < t-(d-1) = t-d+1$ に対して $\operatorname{Ext}^i_R(R/(f) + Q, N) = (0)$ である. $\therefore \widehat{f} : \operatorname{Ext}^i_R(R/Q, N) \xrightarrow{\sim} \operatorname{Ext}^i_R(R/Q, N)$ for $\forall i < t-d$. $\therefore \operatorname{Ext}^i_R(R/Q, N) = (0)$ for $\forall i < t-d$.

Corollary 1.1.3. $M \in \underline{\underline{\mathbf{M}}}(R)$ をとり $t = \operatorname{depth}_R M$, $d = \dim R/P$ $(P \in \operatorname{Spec} R)$ とすると $\exists f_1, \cdots, f_{t-d} \in P$ s,t an M-regular sequence.

Lemma 1.1.4. (S,\mathfrak{n}) は a Noeth local で, $\varphi:R\to S$ は a finite homomorphism of rings とする. そして $M\in \underline{M}(R)$ をとり S-module としても有限生成であるとする. このとき次の条件は同値である.

- (1) *M* は *a C-M R-module* である.
- (2) *M* は *a C-M S-module* である.

$$Proof.$$
 $\sqrt{\mathfrak{m}S}=\mathfrak{n}$ であるから $\mathrm{H}^i_\mathfrak{m}(M)=\mathrm{H}^i_\mathfrak{n}(M)$ for $\forall i$ を見よ.

Lemma 1.1.5. R は a C-M local ring として $P \in \operatorname{Spec} R$ をとると

$$\dim R/P = \dim \widehat{R}/Q \quad for \ \forall Q \in \operatorname{Ass}_{\widehat{R}} \widehat{R}_Q/P\widehat{R}$$

をみたす.

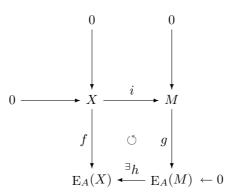
Proof. $\,^{\forall}Q$ \in $\mathrm{Ass}_{\widehat{R}}\,\widehat{R}/P\widehat{R}$ をとれば $P=Q\cap R$ であって、このとき $R_P\to\widehat{R}_Q$ は flat local であるから $\dim R_P+\dim R/P=\dim\widehat{R}_Q+\dim\widehat{R}/Q$ をうる。よって $\dim R_P=\dim\widehat{R}_Q$ を示せばよい。これは \widehat{R}_Q は a C-M local ring であって $\dim\widehat{R}_Q=\dim\widehat{R}_Q+\dim\widehat{R}_Q/P\widehat{R}_Q$ 、 $Q\widehat{R}_Q\in\mathrm{Ass}_{\widehat{R}_Q}\,\widehat{R}_Q/P\widehat{R}_Q$ であることから明らかである。

Lemma 1.1.6. A; a commutative ring, $(0) \neq M \in A - \text{mod}$ とする. 次は同値である.

- (1) $E_A(M)$ $\downarrow I$ indecomposable.
- (2)(0)は直既約.
- $(3) (0) \neq {}^{\forall}X \subseteq M \text{ it } essential.$
- (4) $E_A(X) \cong E_A(M)$ for (0) $\neq {}^{\forall}X \subseteq M$.

1.1. 準備 3

Proof. (1) \iff (2) \iff (3) \Rightarrow (4) は明らか.



とする. $0 \neq {}^\forall m \in M$ をとる. $0 \neq g(m) \in \mathcal{E}_A(M)$ より $x = h(g(m)) \in \mathcal{E}_A(X)$ とかくと $x \neq 0$ である. $\therefore \exists a \in A, \exists y \in X \text{ s,t } f(ay) = x.$ このとき ay = m となる.

Lemma 1.1.7. A; accommutative ring, $(0) \neq X \in A - \text{mod } s, t \ (0) = X_1 \cap \cdots \cap X_n \ (n > 0)$ 無駄のない分解 $\left(i, e \ X_i \not\subseteq \bigcap_{j \neq i} X_j \ for \ \forall i \right)$ であってかつ $X_i \subset X$; $irreducible. \Rightarrow \operatorname{E}_A(X) = \oplus \operatorname{E}_A(X/X_i).$

Proof.

$$\begin{array}{cccc}
0 & 0 \\
\downarrow & \downarrow \\
0 & \longrightarrow X & \xrightarrow{f} & \oplus X/X_i \\
\downarrow & \downarrow & \downarrow \\
E_A(X) & \oplus E_A(X/X_i)
\end{array}$$

をみて $f: X \to \oplus X/X_i$ が essential であれば十分、 $0 \neq {}^\forall \alpha \in \oplus X/X_i$ をとり $\alpha = (\overline{x_1}, \cdots, \overline{x_n})$ とかく、そして $\ell = \#\{i | \overline{x_i} \neq 0\}$ とおく、 ℓ についての induction で示す、 $\ell = 1$ のとき $\alpha = (0, \cdots, 0, \overline{x_i}, 0, \cdots, 0)$ とする、 $\exists y_i \in \bigcap_{j \neq i} X_j \setminus X_i$ より $(0) \neq A\overline{y_i} \subset X/X_i \ni \overline{x_i}$ であるから上の Lemma から $\exists a \in A \text{ s,t } 0 \neq a\overline{x_i} \in A\overline{y_i}$. ∴ $a\overline{x_i} = b\overline{y_i}$ for some $b \in A$. ∴ $f(by_i) = (0, \cdots, 0, a\overline{x_i}, 0, \cdots, 0) = a\alpha$.

 $\ell > 1$ として $\ell - 1$ まで正しいとする. $\forall i \in \{i | \overline{x_i} \neq 0\}$ をとると $\exists (y_i \in X,\ a,b \in A) \text{ s,t } y_i \in X_j \ (\forall j \neq i),\ y_i \notin X_i,\ 0 \neq a\overline{x_i} = b\overline{y_i} \text{ in } X/X_i.$ よって $a\alpha - bf(y_i) = (a\overline{x_1}, \cdots, 0, \cdots, a\overline{x_n}) =: \xi$ とすると $\xi \neq 0$ である. この ξ については induction から $\exists c \in A \text{ s,t } 0 \neq c\xi = f(z) \text{ for some } z \in X.$ $\therefore (ca)\alpha = f(z) + (bc)f(y_i) = f(z + bcy_i).$ 今 $(ca)\alpha \neq 0$ であることが確かめられるので f は essential.

Corollary 1.1.8. $I \subsetneq R$; $ideal\ s,t\ \sqrt{I}=\mathfrak{m},\ I=I_1\cap\cdots\cap I_\ell;\ I_i\$ は $irreducible\$ であって上の分解は無駄のないものとすれば $\ell=\dim_{R/I}(0)$ \vdots \mathfrak{m} である.

Corollary 1.1.9. $R \not\in a$ C-M local ring, $r = r_R(R) \not\succeq \bigcup \underline{x} \not\in a$ maximal R-regular sequence \succeq \forall \uparrow \downarrow

 $I = I_1 \cap \cdots \cap I_\ell$ for some $I_i | \mathsf{d}$ an irreducible ideal

とかける.

Proposition 1.1.10. $\dim R = 0$ とする. 次は同値である.

- (1) R は a Gorenstein local ring である.
- (2) $\forall I \subseteq R ideal$ について

(i)
$$I = (0) : (0) : I$$
.

$$(ii)$$
 $\ell_R(I) + \ell_R\left((0) \underset{R}{:} I\right) = \ell_R(R).$ をみたす.

Proposition 1.1.11. $\dim R = 1$ とする. 次は同値である.

- (1) R は a Gorenstein local ring である.
- (2) Ra it irreducible for all $a \in \mathfrak{m}$, R-nzd.
- (3) Ra \exists irreducible for some $a \in \mathfrak{m}$, R-nzd.

$$(4) \ \ell_R \left(\frac{a : \mathfrak{m}}{Ra} \right) = 1.$$

(5) $\ell_R(\mathring{\mathfrak{m}}^{-1}/R) = 1$ where $\mathfrak{m}^{-1} = \{\alpha \in \mathbb{Q}(R) | \alpha \mathfrak{m} \subseteq R\}.$

Proof. $(1) \Longleftrightarrow (2) \Longleftrightarrow (3) \Longleftrightarrow (4)$ は明らか、 $x \in \mathfrak{m};$ an R-nzd をとる、 ${}^\forall r \in x$ \vdots \mathfrak{m} をとれば $r\mathfrak{m} \subseteq (x)$ よい $\frac{r}{x} \in \mathfrak{m}^{-1}$ である、 \therefore $\exists \widehat{x^{-1}} : x$ \vdots $\mathfrak{m} \to \mathfrak{m}^{-1}, \ r \mapsto \frac{r}{x}.$ ${}^\forall \alpha \in \mathfrak{m}^{-1}$ をとり $\alpha = \frac{b}{a}$ とかく、すると $\alpha = \frac{1}{x} \frac{bx}{a},$ $x\alpha = \frac{bx}{a} \in R$ となる、今 ${}^\forall m \in \mathfrak{m}$ をとると $m(x\alpha) = (m\alpha)x$ であって、一方で $\alpha \in \mathfrak{m}^{-1}$ であるから $(m\alpha)x \in Rx$ 、 $\widehat{x^{-1}}$ は onto. f を x \vdots $\mathfrak{m} \to \mathfrak{m}^{-1} \to \mathfrak{m}^{-1}/R$ an R-linear とおくと $\ker f = Rx$ となるから

$$\frac{x:\mathfrak{m}}{Rx} \cong \frac{\mathfrak{m}^{-1}}{R} \quad as \ R - module$$

をうる. よって $(4) \iff (5)$ をうる.

1.2 Cohen-Macaulay type

以下, (R, \mathfrak{m}) を a Noetherian local ring とする.

 $M \in \underline{\underline{\mathbf{M}}}(R)$ を a C-M R-module としたとき $\operatorname{Ext}_R^i(R/\mathfrak{m},M) = (0)$ for $\forall i < \dim_R M = d$, $\operatorname{Ext}_R^d(R/\mathfrak{m},M) \neq (0)$ であった.

Definition 1. M を a C-M R-module, $d = \dim_R M$ とするとき

$$r_R(M) := \dim_{R/\mathfrak{m}} \operatorname{Ext}_R^d(R/\mathfrak{m}, M)$$

と定める. これを M の the Cohen-Macaulay type という.

Remark 1.2.1. 次をみたすことが知られている.

(1) M を a C-M R-module, $d=\dim_R M$ とするとき $\forall \underline{f}=f_1,\cdots,f_d\in\mathfrak{m}; \ an\ M$ - $regular\ sequence\ に対して <math>\mathbf{r}_R(M)=\dim_{R/\mathfrak{m}}(0)$: \mathfrak{m} である.

(2) R が a C-M local ring ならば $\mathbf{r}_R(R) \leq \mathbf{e}(R)$ となりそして R が a RLR でないならば $\mathbf{r}_R(R) < \mathbf{e}(R)$ である.

Lemma 1.2.2.

- (1) M & a C-M R-module, $\underline{f} \subseteq \mathfrak{m}$ & an M-regular sequence \trianglerighteq ts \trianglerighteq ts ts
- (2) $(R,\mathfrak{m}),(S,\mathfrak{n})$ を Noetherian local rings, $\varphi:R\to S$ を onto として a C-M R-module M は S-module としても C-M であるとすれば $\mathbf{r}_R(M)=\mathbf{r}_S(M)$ である.
- (3) M; a C-M R-module. $\Rightarrow r_R(M) = r_{\widehat{R}}(\widehat{M})$.

Proof. (1),(3) は自明. $\underline{f} \subset \mathfrak{m}$ を an M-regular sequence as R-module とすると $0 \to M \xrightarrow{\widehat{f_1}} M$; R-exact. $\therefore 0 \to M \xrightarrow{\varphi(f_1)} M$; S-exact. $\therefore \varphi(\underline{f})$ は an M-regular sequence. そして $R/\mathfrak{m} \cong S/\mathfrak{n}$ より $\mathbf{r}_R(M) = \dim_{R/\mathfrak{m}} \mathrm{Hom}_R(R/\mathfrak{m}, M/\underline{f}M) = \dim_{S/\mathfrak{n}} \mathrm{Hom}_S(S/\mathfrak{n}, M/\varphi(\underline{f})M) = \mathbf{r}_S(M)$.

Lemma 1.2.3. $(R,\mathfrak{m}) \stackrel{\varphi}{\to} (S,\mathfrak{n});$ a flat local homomorphism of Noeth local rings とし M を a C-M R-module, $S/\mathfrak{m}S$ を a C-M local ring とすると

$$r_S(S \otimes_R M) = r_R(M) r_S(S/\mathfrak{m}S)$$

である.

第2章 The Canonical Module

2.1 The canonical module

しばらくは, (R,\mathfrak{m}) を a complete Noetherian local ring, $d=\dim R$ とする. さらに \mathfrak{m} -adic completion を $\hat{*}$, $E=\mathop{\mathrm{E}}_R(R/\mathfrak{m})$ で表すことにする.

Definition 2. $\forall M \in R - \text{mod}, \forall j \in \mathbb{Z}$ に対して

$$T_R^j(M) := \operatorname{Hom}_R \left(H_{\mathfrak{m}}^{d-j}(M), E \right)$$

とかくことにする.

このとき $^{\forall}M \in R - \operatorname{mod}$, $\dim_R M \leq d$ であるから $\operatorname{T}_R^j = 0$ if j < 0 or d < j をうる. 次に $^{\forall}\operatorname{exact}$; $0 \to X \to Y \to Z \to 0$ に対しては $^{\exists}\operatorname{a}$ long exact sequence

$$\cdots \longrightarrow \operatorname{H}^i_{\mathfrak{m}}(X) \longrightarrow \operatorname{H}^i_{\mathfrak{m}}(Y) \longrightarrow \operatorname{H}^i_{\mathfrak{m}}(Z) \stackrel{\Delta}{\longrightarrow} \operatorname{H}^{i+1}_{\mathfrak{m}}(X) \longrightarrow \cdots,$$
$$s, t \ \Delta \texttt{ld} \ exact \ \texttt{に対して} \ natural \ \texttt{である}.$$

そして $\operatorname{Hom}_R(*,E)$ は an exact functor であるから \exists a long exact sequence

$$\cdots \longrightarrow T^i_R(Z) \longrightarrow \mathrm{T}^i_R(Y) \longrightarrow \mathrm{T}^i_R(X) \stackrel{\Delta}{\longrightarrow} \mathrm{T}^{i+1}_R(Z) \longrightarrow \cdots,$$

s,t Δ は exact に対して natural である.

又, 一方で $\{M_{\alpha}\}_{\alpha\in\Lambda}$ where $\Lambda\neq\emptyset$; a set, $M_{\alpha}\in R$ – mod for $\forall \alpha\in\Lambda$ をとると

$$T_{R}^{j}\left(\bigoplus_{\alpha}M_{\alpha}\right) = \operatorname{Hom}_{R}\left(\operatorname{H}_{\mathfrak{m}}^{d-j}\left(\bigoplus_{\alpha}M_{\alpha}\right), E\right) \\
\cong \operatorname{Hom}_{R}\left(\bigoplus_{\alpha}\operatorname{H}_{\mathfrak{m}}^{d-j}(M_{\alpha}), E\right) \\
\cong \prod_{\alpha}\operatorname{Hom}_{R}\left(\operatorname{H}_{\mathfrak{m}}^{d-j}(M_{\alpha}), E\right) \\
= \prod_{\alpha}T_{R}^{j}(M_{\alpha})$$

をみたす. よって

Theorem 2.1.1. $\exists 1 X \in R - \text{mod } s, t T_R^0() \cong \text{Hom}_R(, X) \text{ as functors.}$

Proof. $K_R = T_R^0(R)$ とする. $\forall M \in R - \text{mod}$ に対して $H_{\mathfrak{m}}^d(M) \cong M \otimes_R H_{\mathfrak{m}}^d(R)$ in R - mod であるから $Hom_R(M,K_R) \cong Hom_R\left(H_{\mathfrak{m}}^d(M),E\right)$ in R - mod をうる. そして $H_{\mathfrak{m}}^d(R)$ は an Artinian R-module であるから Matlis duality より $\exists^1 K_R$ をうる.

Definition 3. R は local duality をみたす. $\stackrel{\mathrm{def}}{\Leftrightarrow} \operatorname{Hom}_R\left(\operatorname{H}^{d-j}_{\mathfrak{m}}(\), E\right) \cong \operatorname{Ext}^j_R(\ , \operatorname{K}_R)$ as functors for $\forall j \in \mathbb{Z}$.

Lemma 2.1.2. R は local duality をみたす. $\Rightarrow id_R K_R = \dim R$.

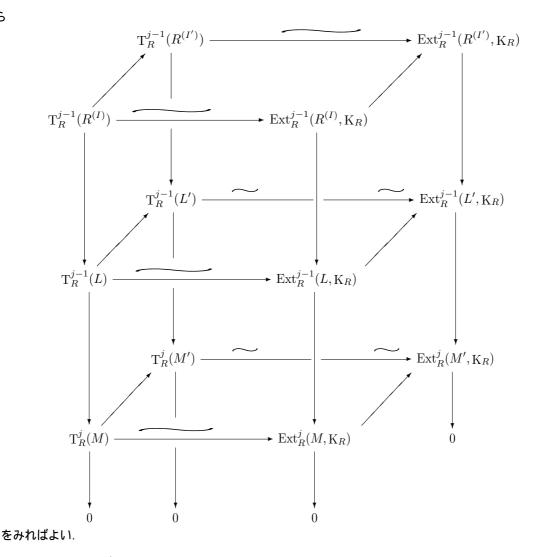
Proof. $\forall j>d$ に対して $(0)=\operatorname{Hom}_R\left(\operatorname{H}^{d-j}_{\mathfrak{m}}(M),E\right)\cong\operatorname{Ext}^j_R(M,\operatorname{K}_R)$ for $\forall M\in\underline{\underline{\mathrm{M}}}(R)$ をみたす. 一方で $\operatorname{Ext}^d_R(R/\mathfrak{m},\operatorname{K}_R)\cong\operatorname{Hom}_R\left(\operatorname{H}^0_{\mathfrak{m}}(R/\mathfrak{m}),E\right)\cong R/\mathfrak{m}\neq (0)$ である. よって $\operatorname{id}_R\operatorname{K}_R=\dim R$ をうる.

Theorem 2.1.3. R は a C-M local ring である. $\Leftrightarrow R$ は local duality をみたす.

Proof. (\Leftarrow) $\mathrm{T}_R^j(R) = \mathrm{Hom}_R\left(\mathrm{H}_{\mathfrak{m}}^{d-j}(R), E\right) \cong \mathrm{Ext}_R^j(R, \mathrm{K}_R)$ であるが j>0 ならば $\mathrm{Ext}_R^j(R, \mathrm{K}_R) = (0)$. $\therefore \mathrm{H}_{\mathfrak{m}}^{d-j}(R) = (0)$ if $j \neq 0$. $\therefore R$ は a C-M local ring.

 $(\Rightarrow)~j\leq 0$ までは正しい. $M,M'\in \underline{\mathbf{M}}(R),~M\stackrel{arphi}{\longrightarrow} M'$ an R-linear をとり

から



これからは, $R \neq \hat{R}$ とする.

Lemma 2.1.4. $M,N\in \underline{\mathrm{M}}(R)$ とする. もし $\widehat{R}\otimes_R M\cong \widehat{R}\otimes_R N$ ならば $M\cong N$ である.

Proof. $\operatorname{Hom}_{\widehat{R}}(\widehat{R} \otimes_R M, \widehat{R} \otimes_R N) \cong \widehat{R} \otimes_R \operatorname{Hom}_R(M,N)$ であるから $\xi \in \operatorname{Hom}_{\widehat{R}}(\widehat{R} \otimes_R M, \widehat{R} \otimes_R N)$, \widehat{R} -isomor に対応する $\sum \alpha_i \otimes_R f_i = \sum \alpha_i (1 \otimes_R f_i) \in \widehat{R} \otimes_R \operatorname{Hom}_R(M,N)$ がとれる. $h: R \to \widehat{R}$ canon, とおくと $\alpha_i \in \widehat{R}$ に対して $\exists a_i \in R$ s,t $\alpha_i = h(a_i) + \beta_i$ for some $\beta_i \in \widehat{\mathfrak{m}}$, そのとき $\sum \alpha_i (1 \otimes_R f_i) \equiv \sum a_i (1 \otimes_R f_i)$ mod $\widehat{\mathfrak{m}}$. $\therefore \sum a_i (1 \otimes_R f_i) = \sum 1 \otimes_R a_i f_i = 1 \otimes_R \sum a_i f_i$ mod $\widehat{\mathfrak{m}}$. この $1 \otimes_R \sum a_i f_i$ を $1 \otimes_R g$ とかく、すると

をみて g は onto. 一方で ξ^{-1} についても同様にすれば $\exists g': N \to M$ an R-linear s,t $g \cdot g' = id_N, g' \cdot g = id_M$. $\therefore g$ は同型射である.

Definition 4. $K_R \in \underline{M}(R)$ とする.

 K_R the canonical R-module ారీంది. $\overset{\mathrm{def}}{\Leftrightarrow} \mathrm{Hom}_{\widehat{R}}\left(\mathrm{H}^d_{\widehat{\mathfrak{m}}}(\),\mathrm{E}_{\widehat{R}}\right) \cong \mathrm{Hom}_{\widehat{R}}(\ ,\mathrm{K}_{\widehat{R}})$ as functors.

 $R = \hat{R}$ であれば $^{\exists 1}$ \mathbf{K}_R であった. そして上の Lemma から次を得る.

Lemma 2.1.5. $\exists K_R. \Rightarrow K_R$ は unique である.

Theorem 2.1.6. R は a C-M local ring とする. 次の条件は同値である.

- $(1) \stackrel{\exists}{\kappa}_R \cong R.$
- (2) R は a Gorenstein local ring である.

Proof. $R = \widehat{R} \ge \mathsf{UT} \sharp \mathsf{II}$.

- (2) \Rightarrow (1) $\operatorname{H}^d_{\mathfrak{m}}(R)=E$ である \ldots $\operatorname{K}_R=\operatorname{Hom}_R\left(\operatorname{H}^d_{\mathfrak{m}}(R),E\right)=\operatorname{Hom}_R(E,E)\cong R.$
- (1)⇒(2) Bass number をみるに

$$\mu^{j}(\mathfrak{m}, R) = \mu^{j}(\mathfrak{m}, K_{R}) = \dim_{R/\mathfrak{m}} \operatorname{Ext}_{R}^{j}(R/\mathfrak{m}, K_{R})$$
$$= \dim_{R/\mathfrak{m}} \operatorname{Hom}_{R} \left(\operatorname{H}_{\mathfrak{m}}^{d-j}(R/\mathfrak{m}, E) \right)$$
$$= \delta_{d,j}.$$

よって R は a Gorenstein local ring である.

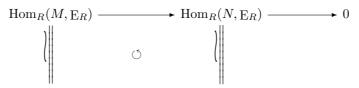
Theorem 2.1.7. $\varphi: R \to A$ a finite homomorphism, $S:=A_{\mathfrak{n}'}$, $\mathfrak{n}:=\mathfrak{n}'A_{\mathfrak{n}'}$ として $d=\dim R$, $d-t=\dim S$ とすると

$$\operatorname{Hom}_{\widehat{R}}\left(\operatorname{H}^{d-j}_{\mathfrak{m}}(\),\operatorname{E}_{\widehat{R}}\right)\cong\operatorname{Ext}_{\widehat{R}}(\ ,\operatorname{K}_{\widehat{R}})\quad as\ functors\quad for\ 0\leq {}^{\forall}j\leq t$$

である. とくに ${}^\exists\operatorname{K}_R$ ならば ${}^\exists\operatorname{K}_S\cong \left[\operatorname{Ext}_R^t(A,\operatorname{K}_R)\right]_{\mathfrak{n}'}$ である.

Lemma 2.1.8. $R = \hat{R}$, $S = \hat{S}$ とし、さらに $\varphi : R \to S$ は a finite local homomorphism とすると $E_S \cong \operatorname{Hom}_R(S, E_R)$ である.

Proof. $\forall M \in S - \operatorname{mod}, \operatorname{Hom}_S(M, \operatorname{Hom}_R(S, \operatorname{E}_R)) \cong \operatorname{Hom}_R(S \otimes_R M, \operatorname{E}_R) = \operatorname{Hom}_R(M, \operatorname{E}_R)$ を満たしていた. 従って $\forall \operatorname{exact} \text{ in } S - \operatorname{mod}; \ 0 \to N \to M$ に対して



 $\operatorname{Hom}_S(M, \operatorname{Hom}_R(S, \operatorname{E}_R)) \longrightarrow \operatorname{Hom}_S(N, \operatorname{Hom}_R(S, \operatorname{E}_R))$

を見て $\operatorname{Hom}_R(S, \operatorname{E}_R)$ は S-injective である. $(0) \neq \operatorname{Hom}_R(S, \operatorname{E}_R)$ は an Artinian であるから $\operatorname{Hom}_R(S, \operatorname{E}_R) \subseteq \operatorname{E}_S^{\alpha}$ for some $\alpha > 0$. \therefore $\operatorname{Ass}_S \operatorname{Hom}_R(S, \operatorname{E}_R) = \{\mathfrak{n}\}$. そして S は a local ring であるから直既約である. よって $\operatorname{Hom}_R(S, \operatorname{E}_R)$ も直既約である.

従って、これらのことから
$$\mathrm{E}_S$$
 は $\mathrm{Hom}_R(S,\mathrm{E}_R)$ で与えられる.

Lemma 2.1.9. A は a semi local Noetherian, J = J(A) とし $M \in \underline{M}(R)$ とする.

$$(1) \ \widehat{A}^J \cong \bigoplus \widehat{A}^{\mathfrak{n}}.$$

$$(1) \ \widehat{A}^J \cong \bigoplus_{\mathfrak{n} \in \operatorname{Max} A} \widehat{A}^{\mathfrak{n}}.$$

$$(2) \ \widehat{M}^J \cong \bigoplus_{\mathfrak{n} \in \operatorname{Max} A} \widehat{M}^{\mathfrak{n}}.$$

但し、 $\widehat{M}^{\mathfrak{n}}$ は M の \mathfrak{n} -adic completion を表す.

 $Proof. \ \mathrm{Max}\, A=\{\mathfrak{n}_1,\cdots,\mathfrak{n}_s\}$ とかく、すると $J^m=\mathfrak{n}_1^m\cdots\mathfrak{n}_s^m \ (m>0)$ をみたすので $A/J^m\cong A/\mathfrak{n}_1^m\oplus A/\mathfrak{n}_1^m\oplus A/\mathfrak{n}_2^m\oplus A/\mathfrak{n}$ $\cdots \oplus A/\mathfrak{n}_{\mathfrak{s}}^m$ をうる.

$$\therefore \quad \left\{ A/J^{\ell} \right\}_{\ell > 0} \cong \left\{ \bigoplus_{i} A/\mathfrak{n}_{i}^{\ell} \right\}_{\ell > 0} \ as \ projective \ systems.$$

また $1 \leq \forall i \leq s$ について

$$0 \longrightarrow \left\{ A/\mathfrak{n}_i^{\ell} \right\} \longrightarrow \left\{ \underset{i}{\oplus} A/\mathfrak{n}_i^{\ell} \right\} \qquad splitting \ exact \ in \ systems$$

をみて
$$\widehat{A}^J\cong\bigoplus_{\mathfrak{n}\in\operatorname{Max} A}\widehat{A}^\mathfrak{n}$$
 をうる. また, このとき $\widehat{A}^J_{\mathfrak{n}\widehat{A}}\cong\widehat{A_{\mathfrak{n}}}$ for ${}^{orall}\mathfrak{n}\in\operatorname{Max} A$ をみたしている.

Proof of theorem. $\varphi: R \to A$ は finite であったから A は a semi local であり $\mathfrak{m}A \subseteq \sqrt{\mathfrak{m}A} = J(A) =: J$ となるので $\exists k>0$ s,t $J^k\subseteq\mathfrak{m}A$. よって J-adic completion は $\mathfrak{m}A$ -adic completion と同じであるから $\widehat{A}^J \cong \widehat{R} \otimes_R A$ をうる. $\therefore \widehat{R} o \widehat{A}^J o \widehat{A}^J_{\mathfrak{n}A} = \widehat{S}$ は finite local. $\therefore E_{\widehat{S}} = \operatorname{Hom}_{\widehat{R}} \left(\widehat{S}, E_{\widehat{R}} \right)$. よって

$$\begin{split} \mathbf{K}_{\widehat{S}} & \cong & \mathrm{Hom}_{\widehat{S}}\left(\mathbf{H}^{d-t}_{\widehat{\mathfrak{n}}}(\widehat{S}), \mathbf{E}_{\widehat{S}}\right) \cong \mathrm{Hom}_{\widehat{S}}\left(\mathbf{H}^{d-t}_{\widehat{\mathfrak{n}}}(\widehat{S}), \mathrm{Hom}_{\widehat{R}}\left(\widehat{S}, \mathbf{E}_{\widehat{R}}\right)\right) \\ & \cong & \mathrm{Hom}_{\widehat{R}}\left(\widehat{S} \otimes_{\widehat{R}} \mathbf{H}^{d-t}_{\widehat{\mathfrak{n}}}(\widehat{S}), \mathbf{E}_{\widehat{R}}\right) = \mathrm{Hom}_{\widehat{R}}\left(\mathbf{H}^{d-t}_{\widehat{\mathfrak{n}}}(\widehat{S}), \mathbf{E}_{\widehat{R}}\right) \\ & \cong & \mathrm{Hom}_{\widehat{R}}\left(\mathbf{H}^{d-t}_{\widehat{\mathfrak{m}}}(\widehat{S}), \mathbf{E}_{\widehat{R}}\right) \\ & \cong & \mathrm{Ext}_{R}^{t}\left(\widehat{S}, \mathbf{K}_{\widehat{R}}\right) \end{split}$$

となる. 一方で

$$\begin{split} \widehat{S} \otimes_{A_{\mathfrak{n}}} \left[\operatorname{Ext}_{R}^{t} \left(A, \operatorname{K}_{R} \right) \right]_{\mathfrak{n}} & \cong & \widehat{S} \otimes_{\widehat{A}} \widehat{A}^{J} \otimes_{A} \operatorname{Ext}_{R}^{t} (A, \operatorname{K}_{R}) \\ & \cong & \widehat{S} \otimes_{\widehat{A}} \left(\left(\widehat{R} \otimes_{R} A \right) \otimes_{A} \operatorname{Ext}_{R}^{t} (A, \operatorname{K}_{R}) \right) \\ & = & \widehat{S} \otimes_{A} \operatorname{Ext}_{\widehat{R}}^{t} \left(\widehat{R} \otimes_{R} A, \operatorname{K}_{\widehat{R}} \right) \\ & = & \widehat{S} \otimes_{A} \operatorname{Ext}_{\widehat{R}}^{t} \left(\widehat{A}^{J}, \operatorname{K}_{\widehat{R}} \right). \end{split}$$

ここで $\widehat{A}^J = \bigoplus_{\mathfrak{n} \in \operatorname{Max} A} \widehat{A}^{\mathfrak{n}}$ より $\widehat{A}^J \ni 1 = \sum e_{\mathfrak{n}}$ where $e_{\mathfrak{n}} = (0, \cdots, 0, 1, 0 \cdots, 0)$ となる. このとき $\forall \mathfrak{n} \in \operatorname{Max} A$ に対して $\widehat{A}^{\mathfrak{n}}$ \ni $1=e_{\mathfrak{n}}$ であるから,もし $\widehat{S}
eq \widehat{A}^{\mathfrak{n}'}$ ならば $\widehat{S} \otimes \operatorname{Ext}_{\widehat{R}}^t \left(\widehat{A}^{\mathfrak{n}'}, \operatorname{K}_{\widehat{R}}\right) = (0)$ となる.

$$\therefore \quad \widehat{S} \otimes \operatorname{Ext}_{\widehat{R}}^{t}\left(\widehat{A}^{J}, K_{\widehat{R}}\right) = \operatorname{Ext}_{\widehat{R}}^{t}\left(\widehat{A}^{\mathfrak{n}}, K_{\widehat{R}}\right) = \operatorname{Ext}_{\widehat{R}}^{t}\left(\widehat{S}, K_{\widehat{R}}\right).$$

Example 2.1.10. R は a Gorenstein local ring であって $R \to S$ は finite local とせよ. このとき $K_S \cong \operatorname{Ext}_R^t(S,R)$ である. ただし $t = \dim R - \dim S$ とする.

Lemma 2.1.11. (R,\mathfrak{m}) を a Noeth local, $\exists K_R$ とする. そして $A=R[X_1,\cdots,X_n]$ (n>0), $S=A_Q$ $Q\in\operatorname{Spec} A$ s,t $\mathfrak{m}=Q\cap R$ とすると $\exists K_S\cong S\otimes_R K_R$ である.

 $Proof.\ R \to A$ は flat なので $R \to S$ は flat local である. ここで $(R,\mathfrak{m}) \to (S,\mathfrak{n})$ flat local, ${}^\exists K_R$, if $S/\mathfrak{m}S=$ a Gorenstein local ring. \Rightarrow ${}^\exists K_S \cong S \otimes K_R$. を認めると

$$\frac{A_Q}{\mathfrak{m}A_Q} = \left(\frac{A}{\mathfrak{m}A}\right)_Q = \left(\left(\frac{R}{\mathfrak{m}}\right)[X_1, \cdots, X_n]\right)_{Q'} \quad \text{for some } Q' \in \operatorname{Spec}\left(\frac{R}{\mathfrak{m}}\right)[X_1, \cdots, X_n]$$

となり $A_Q/\mathfrak{m}A_Q$ は a Gorenstein local ring である.

Lemma 2.1.12. $R = \hat{R}$ とする.

 $P \in \operatorname{Spec} R \ s, t \ \dim R/P + \dim R_P = \dim R \Rightarrow {}^{\exists} K_{R_P} \cong R_P \otimes K_R.$

Proof. $\exists S$; c,i s,t R = S/I for some $I \subset S$ ideal, $\dim R = \dim S$. ここで $\mathfrak{p} = P \cap S$ とおくと $R_P \cong S_{\mathfrak{p}} \otimes_S R$ となる. そして $\dim R_P = \dim S_{\mathfrak{p}}$ をみたすので

$$\therefore \quad ^{\exists} \mathbf{K}_{R_{P}} = \operatorname{Hom}_{S_{\mathfrak{p}}}(R_{P}, S_{\mathfrak{p}})$$

$$= \operatorname{Hom}_{S_{\mathfrak{p}}}(S_{\mathfrak{p}} \otimes_{S} R, S_{\mathfrak{p}})$$

$$= S_{\mathfrak{p}} \otimes_{S} \operatorname{Hom}_{S}(R, S)$$

$$= S_{\mathfrak{p}} \otimes_{S} (R \otimes_{R} \operatorname{Hom}_{R}(R, S))$$

$$= R_{P} \otimes_{R} \mathbf{K}_{R}.$$

以下 (R,\mathfrak{m}) を a C-M local ring, $\dim R=d$ とする. そして \widehat{R} によって R の \mathfrak{m} -adic completion, $E=\mathrm{E}_R(R/\mathfrak{m})$ を表すことにする.

Theorem 2.1.13. $C \in \underline{M}(R)$ について次は同値である.

- (1) C \downarrow the canonical R-module \mathcal{C} \mathfrak{s} 3.
- (2) $\forall i \in \mathbb{Z}, \ \mu^i(P,C) = \delta_{i,\operatorname{ht}_R P} \ \text{for all } P \in \operatorname{Spec} R.$
- (3) $\dim_{R/\mathfrak{m}} \operatorname{Ext}_{R}^{i}(R/\mathfrak{m}, C) = \delta_{i,d}$.

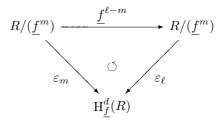
Proof. (1) \Rightarrow (3) は $\operatorname{Ext}_R^i(R/\mathfrak{m},C)\cong\operatorname{Hom}_R\left(\operatorname{H}^{d-i}_\mathfrak{m}(R/\mathfrak{m}),E\right)$ より明らかである。これから (3) \Rightarrow (1) を示そう。まず、 $\dim_{\widehat{R}/\widehat{\mathfrak{m}}}\operatorname{Ext}_{\widehat{R}}^i\left(\widehat{R}/\widehat{\mathfrak{m}},\widehat{R}\otimes_RC\right)=\dim_{R/\mathfrak{m}}\operatorname{Ext}_R^i(R/\mathfrak{m},C)$ をみて $R=\widehat{R}$ として良い。今、仮定をみるに $\operatorname{depth}_RC=d$ であって更に $0\to M\to I^*$ を M の the min injective resolution とすれば I^i は $i\neq d$ であれば E を直和因子に含まない。ここで $\dim_R M=0$ とすると $\operatorname{Ext}_R^d(M,C)\cong\operatorname{Hom}_R(M,E)$ を簡単にうる。又 $\operatorname{Ext}_R^i(M,C)=(0)$ $\forall i\neq d$ も明らか。よって $\dim_R M=0$ ならば正しい。

Lemma 2.1.14. $\forall \underline{f} = f_1, \cdots, f_d \text{ an } R\text{-sop}$ に対して

$$\varprojlim_{\ell} \operatorname{Hom}_{R}\left(R/(\underline{f}^{\ell}), E\right) \cong \operatorname{Hom}_{R}\left(\operatorname{H}_{\underline{f}}^{d}(R), E\right)$$

である.

 $Proof.\ \ ^{orall}\ell>0$ に対して $arepsilon:R/(\underline{f}^\ell) o \mathrm{H}^d_f(R)$ を canon map とする. $\ ^{orall}(\ell>m>0)$ について



であるから

$$\operatorname{Hom}_{R}\left(\operatorname{H}_{\underline{f}}^{d}(R),E\right)$$

$$\varepsilon_{\ell}^{*} \qquad \qquad \varepsilon_{m}^{*}$$

$$\operatorname{Hom}_{R}(R/(\underline{f}^{\ell}),E) \longleftarrow \underbrace{\underline{f}^{\ell-m*}} \operatorname{Hom}_{R}(R/(\underline{f}^{m}),E)$$

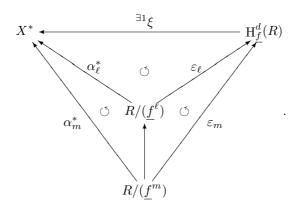
をうる. よって $\{\varepsilon.^*\}: \operatorname{Hom}_R\left(\operatorname{H}^d_{\underline{f}}(R), E\right) \to \left\{\operatorname{Hom}_R(R/(\underline{f}^\ell), E)\right\}$ a map of systems をうる. ここで $X \in R - \operatorname{mod}, \, \{\alpha.\}: X \to \left\{\operatorname{Hom}_R(R/(\underline{f}^\ell), E)\right\}$ a map of systems をあたえると $\forall (\ell > m > 0)$ について

$$\operatorname{Hom}_{R}\left(R/(\underline{f}^{\ell}), E\right) \longrightarrow \operatorname{Hom}_{R}\left(R/(\underline{f}^{m}), E\right)$$

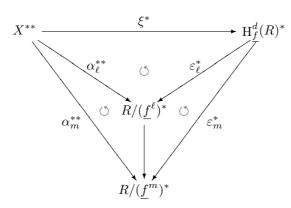
$$\alpha_{\ell} \qquad \alpha_{m}$$

$$X$$

であるから



よって



をうる. ここで $i: X \to X^{**}$ canon map とおくと

$$X \xrightarrow{\xi^* \cdot i} \operatorname{Hom}_R \left(\operatorname{H}_{\underline{f}}^d(R), E \right)$$

$$\left\{ \alpha . \right\} \left\{ \operatorname{Hom}_R(R/(\underline{f}^\ell), E) \right\}$$

$$\therefore \varprojlim_{\ell} \operatorname{Ext}_R^d \left(R/(\underline{f}^{\ell}), C \right) \cong \varprojlim_{\ell} \operatorname{Hom}_R \left(R/(\underline{f}^{\ell}), E \right) \cong \operatorname{Hom}_R \left(\operatorname{H}_{\underline{f}}^d(R), E \right) = \operatorname{K}_R.$$

Lemma 2.1.15. $C \cong \varinjlim_{\ell} \operatorname{Ext}_{R}^{d} \left(R / (\underline{f}^{\ell}), C \right)$

Proof. $C_i^{\ell} = C/(f_1^{\ell}, \cdots, f_i^{\ell})C$ とおく. すると

$$0 \longrightarrow C_i^{\ell} \xrightarrow{\widehat{f_{i+1}^{\ell}}} C_i^{\ell} \longrightarrow C_{i+1}^{\ell} \longrightarrow 0$$

$$\widehat{f_1 \cdots f_i} \Big| f_1 \widehat{\cdots f_i f_{i+1}} \Big| f_1 \widehat{\cdots f_{i+1}} \Big|$$

$$0 \longrightarrow C_i^{\ell+1} \xrightarrow{\widehat{f_{i+1}^{\ell+1}}} C_i^{\ell} \longrightarrow C_{i+1}^{\ell+1} \longrightarrow 0$$

をみて

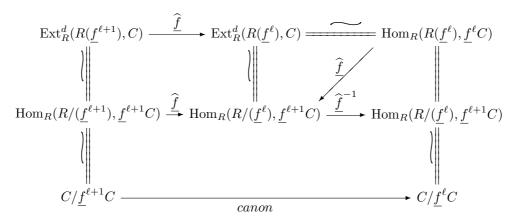
$$0 \longrightarrow \operatorname{Ext}_R^j\left(R/(\underline{f}^\ell), C_i^\ell\right) \longrightarrow \operatorname{Ext}_R^j\left(R/(\underline{f}^\ell), C_{i+1}^\ell\right) \longrightarrow \operatorname{Ext}_R^{j+1}\left(R/(\underline{f}^\ell), C_i^\ell\right) \longrightarrow 0$$

$$\widehat{f_1 \cdots f_i} \downarrow \qquad \widehat{f_1 \cdots \widehat{f_{i+1}}} \downarrow \qquad \widehat{f_1 \cdots \widehat{f_{i+1}}} \downarrow$$

$$0 \longrightarrow \operatorname{Ext}_R^j\left(R/(\underline{f}^\ell), C_i^{\ell+1}\right) \longrightarrow \operatorname{Ext}_R^j\left(R/(\underline{f}^\ell), C_{i+1}^{\ell+1}\right) \longrightarrow \operatorname{Ext}_R^{j+1}\left(R/(\underline{f}^\ell), C_i^{\ell+1}\right) \longrightarrow 0$$

となる. よって

をとなり、これより下の可換図をうる.



よって
$$\left\{\operatorname{Ext}_R^d\left(R/(\underline{f}^\ell),C\right)\right\}_{\ell>0}\cong \left\{C/\underline{f}^\ell C\right\}_{\ell>0}$$
 as inverse systems を得るので $\varinjlim_{\ell}\operatorname{Ext}_R^d\left(R/(\underline{f}^\ell),C\right)\cong\widehat{C}=C.$

よって $C=\mathrm{K}_R$ となり (3) \Rightarrow (1) が示せた. (2) \Rightarrow (3) は自明であるから (1) \Rightarrow (2) だけをいえばよい. そ れは次の Lemma が述べている.

Lemma 2.1.16. $\exists K_R. \Rightarrow \exists K_{R_P} \cong R_P \otimes_R K_R \text{ for all } P \in \operatorname{Spec} R.$

 $Proof.\ P \in \operatorname{Spec} R$ をとる. そして $Q \in \operatorname{Ass}_{\widehat{R}} \widehat{R}/P\widehat{R}$ をとると $P = Q \cap R, \ \dim \widehat{R}_Q/P\widehat{R}_Q = 0$ であって $\dim R_P = \dim \widehat{R}_Q =: s$ をみたす. 又 $R_P o \widehat{R}_Q$ は flat local, K_R は MCM , であるから $R_P \otimes_R \mathrm{K}_R$ は $\text{MCM } R_P \text{-module } \texttt{\it T53}. \ \, \texttt{\it 7LT} \ \, \mathrm{K}_{\widehat{R}_Q} \cong \widehat{R}_Q \otimes_{\widehat{R}} \mathrm{K}_{\widehat{R}} \ \, \texttt{\it I3} \ \, \text{the canonical } \widehat{R}_Q \text{-module } \texttt{\it T530T}, \ \texttt{\it C15L}$ $\mathfrak{O}^{\forall i \neq s, (0)} = \operatorname{Ext}^{i}_{\widehat{R}_{O}}\left(\widehat{R}_{Q}/P\widehat{R}_{Q}, \operatorname{K}_{\widehat{R}_{Q}}\right) \cong \widehat{R}_{Q} \otimes_{R_{P}} \operatorname{Ext}^{i}_{R_{P}}\left(R_{P}/PR_{P}, R_{P} \otimes_{R} \operatorname{K}_{R}\right).$

$$\therefore \dim_{R_P/PR_P} \operatorname{Ext}_{R_P}^i (R_P/PR_P, R_P \otimes_R K_R) = 0.$$

$$\therefore \dim_{R_P/PR_P} \operatorname{Ext}_{R_P}^i \left(R_P/PR_P, R_P \otimes_R K_R \right) = 0.$$
 $-$ 方 $, 1 = \operatorname{r}_{\widehat{R}_Q} \left(\operatorname{K}_{\widehat{R}_Q} \right) = \operatorname{r}_{R_P} \left(R_P \otimes_R K_R \right) \cdot \operatorname{r} \left(\widehat{R}_Q/P\widehat{R}_Q \right)$ をみて $\operatorname{r}_{R_P} \left(R_P \otimes_R K_R \right) = 1$ をうる.

 $(3) \Rightarrow (1)$ により $\operatorname{K}_{R_P} = R_P \otimes_R K_R$ をうる.

Corollary 2.1.17. d > 0, $x \in \mathfrak{m}$; an R-regular とせよ. $\exists K_R$. $\Rightarrow \exists K_{R/xR} \cong K_R / x K_R$.

Corollary 2.1.18. d = 0 \$\tan 5 \text{if } K_R = E.

Theorem 2.1.19. $C \in M(R)$ であるとき次は同値である.

- (1) C is the canonical R-module $rac{3}{5}$.
- (2) $\forall M$; a MCM R-module について
 - (a) $\operatorname{Hom}_R(M,C)$ は a MCM R-module である.
 - (b) $\operatorname{Ext}_{R}^{j}(M,C) = (0) \text{ for } \forall j \neq 0.$
 - (c) $M \cong_{canon} \operatorname{Hom}_R(\operatorname{Hom}_R(M, C), C)$. を全てみたす.

- (3) $\forall M; a C-M R-module, <math>r := \dim_R M$ について
 - (a) Ext $_R^{d-r}(M,C)$ は an r-dim C-M R-module である.

 - (b) $\operatorname{Ext}_R^j(M,C) = (0)$ $for \forall j \neq d-r$. (c) $M \cong \operatorname{Ext}_R^{d-r} \left(\operatorname{Ext}_R^{d-r}(M,C),C\right)$. を全てみたす.

(1) \Rightarrow (2) $R=\widehat{R}$ としてよい. すると (b) については $\operatorname{Ext}_R^j(M,C)\cong\operatorname{Hom}_R\left(\operatorname{H}^{d-j}_{\mathfrak{m}}(M),E\right)$ であることか ら明らかである. (a) を d についての induction で証明する. d=0 のときは自明であるから d>0 とし て d-1 まで正しいとせよ. $\operatorname{Ass}_R M, \operatorname{Ass}_R C \subseteq \operatorname{Ass} R$ より an R-regular element $x \in \mathfrak{m}$ は M, C-regular でもある. さらに $\operatorname{Ass}_R\operatorname{Hom}_R(M,C)=\operatorname{Supp}_RM\cap\operatorname{Ass}_RC$ をみて x は $\operatorname{Hom}_R(M,C)$ -regular でもある. $\overline{M} = M/xM$ $\xi \sharp \zeta \xi$ an exact sequence; $0 \to M \xrightarrow{\widehat{x}} M \to \overline{M} \to 0 \xi \jmath$

$$0 \to \operatorname{Hom}_{R}\left(\overline{M}, C\right) \to \operatorname{Hom}_{R}(M, C) \xrightarrow{\widehat{x}} \operatorname{Hom}_{R}(M, C) \to \operatorname{Ext}_{R}^{1}\left(\overline{M}, C\right) \to 0 \quad exact.$$

$$\parallel \operatorname{Hom}_{R}\left(\operatorname{H}^{d}_{\mathfrak{m}}(\overline{M}), E\right)$$

$$\parallel (0)$$

 $:: \operatorname{Ext}_R^1(\overline{M}, C) \cong \operatorname{Hom}_R(M, C)/x \operatorname{Hom}_R(M, C)$. このとき

$$\operatorname{Ext}_{R}^{1}\left(\overline{M},C\right)\cong\operatorname{Hom}_{R}\left(\overline{M},C/xC\right)\cong\operatorname{Hom}_{R/xR}\left(M/xM,C/xC\right)$$
 MCM $R/xR-module$

であるから $\operatorname{Hom}_R(M,C)/x\operatorname{Hom}_R(M,C)$ は a (d-1)-dim C-M R-module. \therefore $\operatorname{Hom}_R(M,C)$ は a MCM R-module.

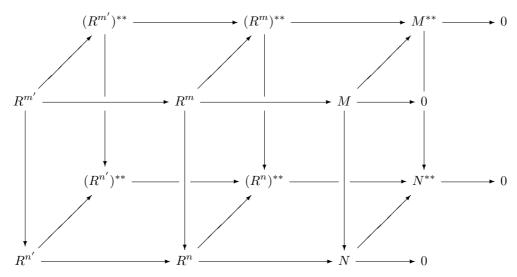
これから (c) を示す. $\forall M$; a MCM R-module に対して $M^* := \operatorname{Hom}_R(M,C)$ とかく. すると

$$R^{**} = \operatorname{Hom}_R(\operatorname{Hom}_R(R, C), C) \cong \operatorname{Hom}_R(C, C) \cong \operatorname{Hom}_R(\operatorname{H}^d_{\mathfrak{m}}(C), E) \cong R$$

をうるので $\forall \ell > 0, \ (R^{\ell})^{**} \cong R^{\ell}$ である. よって M, N を MCM R-modules, $\alpha : M \to N$ an R-linear を とり

17

をとると



をうる. これを見て $M \cong M^{**}$ canon をうる.

(2)⇒(3) M を a C-M R-module とし $s=\dim_R M$ とおく、まず (b) を s についての induction で証明しよう。これは $\forall i < d-s$ については $\operatorname{Ext}^i_R(M,C) = (0)$ は既に示してある。よって $\forall i > d-s$ についての みを示せば十分。もし $\operatorname{hd}_R M < \infty$ であれば $\operatorname{hd}_R M + \operatorname{depth}_R M = \operatorname{depth} R$ より $\operatorname{hd}_R M = d-s$ をうる ので明らか。 $\operatorname{hd}_R M = \infty$ としよう。今

$$\cdots \to F_i \to F_{i-1} \to \cdots \to F_1 \to F_0 \to M \to 0$$
 a free resolution of M

をとり、これを

$$\begin{cases}
0 & \longrightarrow U_1 & \longrightarrow F_0 & \longrightarrow M & \longrightarrow 0 \\
0 & \longrightarrow U_2 & \longrightarrow F_1 & \longrightarrow U_1 & \longrightarrow 0
\end{cases}$$

$$\vdots$$

$$0 & \longrightarrow U_{i+1} & \longrightarrow F_i & \longrightarrow U_i & \longrightarrow 0$$

$$\vdots$$

$$\vdots$$

と short exact sequences に分解する. このとき depth Lemma により $\operatorname{depth}_R U_1 \geq s+1$, $\operatorname{depth}_R U_2 \geq s+2$, \cdots , $\operatorname{depth}_R U_i = d$ for $\forall i \geq d-s$. $\therefore \forall j > d-s$, $\operatorname{Ext}_R^j(M,C) = \operatorname{Ext}_R^{j-(d-s)}(U_{d-s},C) = (0)$. (a) を s についての induction で示す. s = d ならば自明. よって s < d として s+1 以上で正しいとする. $\forall i < d-s$ については $\operatorname{Ext}_R^i(M,R) = (0)$ であるから $\exists x_1, \cdots, x_{d-s-1} \in (0)$ \vdots M s,t R-regular sequence. 今 exact; $F = R^\ell \to M \to$ をとると $F/(\underline{x})F \to M \to 0$ は exact である. $N = F/(\underline{x})F$ とおくと N は (s+1)-dim C-M R-module である. $U = \operatorname{Ker}(N \to M)$ とおくと $0 \to U \to N \to M \to 0$ は exact であって U は (s+1)-dim C-M R-module である. よって

$$0 \longrightarrow \operatorname{Ext}_R^{d-s-1}(N,C) \longrightarrow \operatorname{Ext}_R^{d-s-1}(U,C) \longrightarrow \operatorname{Ext}_R^{d-s}(M,C) \longrightarrow 0 \quad exact$$

をうる. induction の仮定より $\operatorname{Ext}_R^{d-s-1}(N,C), \operatorname{Ext}_R^{d-s-1}(U,C)$ は (s+1)-dim C-M R-module である. local cohomology を見て $\operatorname{depth}_R \operatorname{Ext}_R^{d-s}(M,C) \geq s, \dim_R \operatorname{Ext}_R^{d-s}(M,C) \leq s+1$ である.

もし $\dim_R \operatorname{Ext}_R^{d-s}(M,C) = s+1$ であれば $\exists P \in \operatorname{Supp}_R \operatorname{Ext}_R^{d-s}(M,C)$ s,t $\dim R/P = s+1$. しかし $\dim_R M = s$ より $P \not\in \operatorname{Supp}_R M$ であるから $R_P \otimes_R \operatorname{Ext}_R^{d-s}(M,C) \cong \operatorname{Ext}_{R_P}^{d-s}(M_P,C_P) = (0)$ となり矛盾. よって $\operatorname{Ext}_R^{d-s}(M,C)$ は s-dim C-M R-module である.

Lemma 2.1.20.

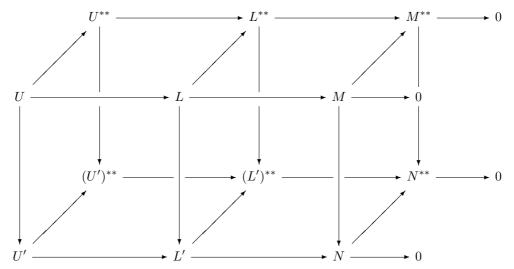
 M_1, M_2 を s-dim C-M R-modules とし $I_i = (0)$ R M_i (i = 1, 2) とすれば $\exists x_1, \cdots, x_{d-s} \in I_1 \cap I_2$ s, t an R-regular sequence.

 $Proof.\ d-s$ についての induction で示す。d-s=0 ならば自明。d-s=1 とせよ。 $\operatorname{Ext}_R^j(M_1,R)=(0)$ $\forall j< d-s=1$ より $\operatorname{Hom}_R(M_1,R)=(0)$. $\therefore \operatorname{V}(I_1)\cap\operatorname{Ass} R=\emptyset$. 同様にして $\operatorname{V}(I_2)\cap\operatorname{Ass} R=\emptyset$. $\therefore I_1\cap I_2\not\subseteq\bigcup_{G\in A}Q$. $\therefore\exists x_1\in I_1\cap I_2 \text{ s,t }x_1$ は an R-regular element.

d-s>1 として d-s-1 までで正しいとせよ. $\exists x \in I_1 \cap I_2$ s,t an R-regular より M_1, M_2 は a C-M R/xR-modules, $\dim_{R/xR} M_i = s$ である. $\therefore \exists y_1, \cdots, y_{d-s-1} \in I_1 \cap I_2$ s,t an R-regular sequence. $\therefore x, y_1, \cdots, y_{d-s-1} \in I_1 \cap I_2$ は an R-regular sequence をなす.

(c) を s についての induction で示す。 $M^* = \operatorname{Ext}_R^{d-s}(M,C)$ とかく。s = d ならば自明。よって s < d として s+1 以上で正しいとする。M,N を s-dim C-M R-modules, $\alpha:M\to N$ an R-linear map とする。こで上の Lemma に従い $x_1,\cdots,x_{d-s-1}\in\left((0)\mathop{:}_R M\right)\cap\left((0)\mathop{:}_R N\right)$ を an R-regular sequence になるようにとると

をうるのであとは



をみればよい.

(3)⇒(1) $k=R/\mathfrak{m}$ とおく. $\operatorname{Ext}_R^j(k,C)=(0)$ $\forall j \neq d$ である. そして $\operatorname{Ext}_R^d(k,C)=k^\ell$ $(\ell>0)$ とかくと $k\cong\operatorname{Ext}_R^d\left(\operatorname{Ext}_R^d(k,C),C\right)=k^{\ell^2}$ より $\ell=1$. $\therefore \mu^j(\mathfrak{m},C)=\delta_{j,d}$.

Lemma 2.1.21. $(0) \neq C \in \underline{M}(R)$ について次は同値である.

- (1) C is the canonical R-module \overline{c} δ .
- (2) C は a MCM R-module であって Ann_R C=(0), $r_R(C)=1$ をみたす.

Proof. (1) \Rightarrow (2) は $R \cong Hom_R(C,C)$ であることからほとんど自明.

(2) \Rightarrow (1) $R = \hat{R}$ としてよい. $0 \to C \to I$ を C の min injective resolution とすれば $E \ll I^d$. $\therefore \operatorname{H}^d_\mathfrak{m}(C) \subseteq E$. よって exact; $0 \to \operatorname{H}^d_\mathfrak{m}(C) \to E \to X \to 0$ について

$$0 \longrightarrow \operatorname{Hom}_{R}(X, E) \longrightarrow R \longrightarrow \operatorname{Hom}_{R}\left(\operatorname{H}^{d}_{\mathfrak{m}}(C), E\right) \longrightarrow 0 \quad exact$$

 $\operatorname{Hom}_R\left(\operatorname{H}^d_{\mathfrak{m}}(C),E\right)=\operatorname{Hom}_R\left(C,\operatorname{K}_R\right)$ となり $C^*=\operatorname{Hom}_R\left(C,\operatorname{K}_R\right)$ とおく. すると

$$\operatorname{Hom}_R(X, E) \subseteq \operatorname{Ann}_R C^* \subseteq \operatorname{Ann}_R C^{**} = \operatorname{Ann}_R C = (0)$$

より
$$C = C^{**} = R^* = K_R$$
 をうる.

これからも、しばらくは (R,\mathfrak{m}) は a C-M ring, $d=\dim R$ とする. そして $k=R/\mathfrak{m}$ とする.

Lemma 2.1.22. $\exists K_R$ であれば次は同値である.

- (1) K_R \exists an R-fractional ideal $rac{r}{\sigma}$ σ .
- (2) $K_R \bowtie an R$ -fractional ideal, $K_R \cap S \neq \emptyset$ resc.
- (3) R_P は a Gorenstein local ring である, for $\forall P \in \text{Min } R$.

但し、 $S = \{s \in R | s \text{ it } R - nzd \text{ である } \}$ とする.

Proof. $K=\mathbb{Q}(R)$ とおく. $(1)\Rightarrow(3)$ $\dim R_P=0$ より $\mathrm{K}_{R_P}=\mathrm{E}_{R_P}$ である. K_R が an R-fractional であれば K_{R_P} は an R_P -fractional であるが $\mathrm{Ass}\,R_P=\{PR_P\}$ であるために $\mathbb{Q}(R_P)=R_P$ である. よって $\mathrm{K}_{R_P}=\mathrm{E}_{R_P}\subseteq R_P$ とみてよい. R_P は local ring なので直既約であるから $R_P=\mathrm{E}_{R_P}$. $\therefore R_P$ は a Gorenstein local ring である.

(1)⇒(2) $\exists s \in \mathcal{S}$ s,t $s \ltimes_R \subseteq R$. よって $\kappa_R \subseteq R$ としてよい. もし $\kappa_R \cap \mathcal{S} = \emptyset$ ならば $\kappa_R \subseteq Q$ for some $Q \in \operatorname{Ass} R = \operatorname{Min} R$. $\therefore \kappa_{R_Q} \subseteq Q = R_Q \neq R_Q$.(矛盾)

(3)⇒(1) $^{\forall}P$ \in $\mathrm{Min}\,R$ をとる. $\mathrm{Ass}_R\,\mathrm{E}_R(R/P)=\{P\}$ であるから $^{\forall}s\in R\setminus P$ は $\mathrm{E}_R(R/P)$ に同型に作用する. $\therefore\mathrm{E}_R(R/P)=\mathrm{E}_{R_P}(R_P/PR_P)=R_P$. $\therefore\mathrm{K}_R\subseteq\bigoplus_{Q\in\mathrm{Min}\,R}\mathrm{E}_R(R/Q)=\bigoplus_{Q\in\mathrm{Min}\,R}R_Q=K$. $\mathrm{K}_R\in\underline{\underline{\mathrm{M}}}(R)$ で

あるから K_R は an R-fractional.

Lemma 2.1.23. 次は同値である.

- (1) R は a Gorenstein local ring である.
- (2) $\operatorname{Ext}_{R}^{1}(M,R) = (0)$, for $\forall M$; a MCM R-module.

Proof. (2)⇒(1) だけで十分. $R=\widehat{R}$ としてよい. そして a MCM R-module M をとる. $M^*:=\operatorname{Hom}_R(M,R)$ とする. もし $\operatorname{hd}_R M<\infty$ であるならば $\operatorname{hd}_R M=0$ より M は free である. $\operatorname{::Ext}_R^i(M,R)=(0)$ for

 $\forall i > 0, M^*$ it a MCM R-module.

 $\operatorname{hd}_R M = \infty$ とする. このときは $F. \to M \to 0$ を a min free resolution として

$$\begin{cases}
0 & \longrightarrow U_1 & \longrightarrow F_0 & \longrightarrow M & \longrightarrow 0 \\
0 & \longrightarrow U_2 & \longrightarrow F_1 & \longrightarrow U_1 & \longrightarrow 0 \\
& & \vdots & & \\
0 & \longrightarrow U_{i+1} & \longrightarrow F_i & \longrightarrow U_i & \longrightarrow 0 \\
\vdots & & & \vdots
\end{cases}$$

と short exact sequences に分解すると U_i は全て MCM R-module であるから $\operatorname{Ext}^i_R(M,R) = \operatorname{Ext}^1_R(U_{i-1},R) = (0) \ (\forall i \geq 2)$ をうる.一方で、 $0 \to M^* \to F^*$.をとり、これを short exact sequences に分解し左から depth Lemma を用いると M^* が a MCM R-module であることが求まる.

$$R\cong R^{**}$$
 であるから ${}^\forall X\in\underline{\underline{\mathbf{M}}}(R)$ に対して $X\cong_{canon}$ $\mathrm{Hom}_R\left(\mathrm{Hom}_R(X,R),R\right)$ をうる. よってこれらから $R=\mathrm{K}_R$ であるから $\mathrm{r}(R)=1.$

Corollary 2.1.24. $d \ge 2$ ならば次は同値である.

- (1) R は a Gorenstein local ring である.
- (2) 次の 2 条件をみたす,
 - (a) $\operatorname{Hom}_R(M,R)$ is a MCM R-module $\operatorname{\mathfrak{CbS}}$ for $\forall M$; a MCM R-module.
 - (b) R_P は a Gorenstein local ring である, for $P \in \operatorname{Spec} R$, $\dim R_P = 2$.

Proof. (2)⇒(1) だけで十分. R は a Gorenstein local ring でないとすると $^{\exists}M$; a MCM R-module s,t $\operatorname{Ext}^1_R(M,R) \neq (0)$. この M に対して exact; $0 \to N \to F \to M \to 0$ where F は f,g free をとると, N は a MCM R-module であって次のような exact が存在する.

$$0 \to \operatorname{Hom}_R(M,R) \to \operatorname{Hom}_R(F,R) \to \operatorname{Hom}_R(N,R) \to \operatorname{Ext}^1_R(M,R) \to 0.$$

このとき $\operatorname{depth}_R\operatorname{Hom}_R(M,R)=\operatorname{depth}_R\operatorname{Hom}_R(F,R)=\operatorname{depth}_R\operatorname{Hom}_R(N,R)=d$ であるから $\operatorname{depth}_R\operatorname{Ext}_R^1(M,R)\geq d-2$ を保証する. $\operatorname{::dim}_R\operatorname{Ext}_R^1(M,R)\geq d-2$. $\operatorname{::}^\exists P\in\operatorname{Supp}\operatorname{Ext}_R^1(M,R)$ s,t $\operatorname{dim} R_P=2$. このとき R_P は 2-dim Gorenstein local ring, M_P は a MCM R-module であるから

$$(0) \neq R_P \otimes_R \operatorname{Ext}^1_R(M,R) \cong \operatorname{Ext}^1_{R_P}(M_P,R_P) = \operatorname{Ext}^1_{R_P}(M_P,\mathsf{K}_{R_P}) \cong \operatorname{Hom}_{R_P}\left(\operatorname{H}^1_{PR_P}(M_P),\mathsf{E}_{R_P}\right) = (0)$$

Theorem 2.1.25. $\exists K_R$ restrict $\forall M$ a C-M R-module, $r = \dim_R M$ について

$$\mu_R(M) = \mathbf{r}_R \left(\operatorname{Ext}_R^{d-r}(M, \mathbf{K}_R) \right) , \quad \mathbf{r}_R(M) = \mu_R \left(\operatorname{Ext}_R^{d-r}(M, \mathbf{K}_R) \right) ,$$

である.

$$Proof.$$
 $\mu_{R}(M) = r_{R}\left(\operatorname{Ext}_{R}^{d-r}\left(M, \mathbf{K}_{R}\right)\right)$ を認めると
$$r_{R}(M) = r_{R}\left(\operatorname{Ext}_{R}^{d-r}\left(\operatorname{Ext}_{R}^{d-r}\left(M, \mathbf{K}_{R}\right), \mathbf{K}_{R}\right)\right) = \mu_{R}\left(\operatorname{Ext}_{R}^{d-r}\left(M, \mathbf{K}_{R}\right)\right)$$

をうる. よって $\mu_R(M)=\mathrm{r}_R\left(\mathrm{Ext}_R^{d-r}\left(M,\mathrm{K}_R
ight)
ight)$ を d についての induction で証明する. d=0 ならば

$$\mathbf{r}_{R}\left(\operatorname{Hom}_{R}(M, \mathbf{K}_{R})\right) = \mathbf{r}_{R}\left(\operatorname{Hom}_{R}\left(\operatorname{H}_{\mathfrak{m}}^{0}(M), E\right)\right) = \dim_{k} \operatorname{Hom}_{R}\left(k, \operatorname{Hom}_{R}(M, E)\right)$$

$$= \dim_{k} \operatorname{Hom}_{R}(M/\mathfrak{m}M, E)$$

$$= \ell_{R}(M/\mathfrak{m}M) = \mu_{R}(M)$$

である. d>0 として d-1 以下まで正しいとする. $r=\dim_R M$ とおく.

d=r ならば $\mathbf{r}_R\left(\mathrm{Ext}_R^{d-r}\left(M,\mathbf{K}_R
ight)
ight)=\mathbf{r}_R\left(\mathrm{Hom}_R(M,\mathbf{K}_R)
ight)$ であるから $x\in\mathfrak{m}$ を an R-regular にとると an M-regular でもあって、今 $\overline{R}=R/xR$ 、 $\overline{M}=M/xM$ 、 $\overline{\mathbf{K}_R}=\mathbf{K}_R/x\,\mathbf{K}_R$ とそれぞれおくと $\overline{\mathbf{K}_R}=\mathbf{K}_{\overline{R}}$ である。このとき

$$\begin{array}{rcl} \mathbf{r}_{R}\left(\mathrm{Hom}_{R}(M,\mathbf{K}_{R})\right) & = & \mathbf{r}_{R}\left(\frac{\mathrm{Hom}_{R}(M,\mathbf{K}_{R})}{x\,\mathrm{Hom}_{R}(M,\mathbf{K}_{R})}\right) \\ & = & \mathbf{r}_{\overline{R}}\left(\mathrm{Hom}_{\overline{R}}\left(\overline{M},\overline{\mathbf{K}_{R}}\right)\right) \\ & = & \mathbf{r}_{\overline{R}}\left(\mathrm{Hom}_{\overline{R}}\left(\overline{M},\mathbf{K}_{\overline{R}}\right)\right) \\ & = & \mu_{\overline{R}}\left(\overline{M}\right) \\ & = & \mu_{R}(M) \end{array}$$

である. s < d として s+1 以上まで正しいとすると $x_1, \cdots, x_{d-s} \in (0)$ \vdots M を a K_R -regular sequence をなすようにとれば後は induction による.

Corollary 2.1.26. $\exists K_R. \Rightarrow \mu_R(K_R) = r(R).$

Corollary 2.1.27. $d \ge 1$, $\exists K_R \subseteq R$ とする. $K_R \ne R$. $\Rightarrow R/K_R$ は a (d-1)-dim Gorenstein local ring である.

Proof. ここでは $I=\mathrm{K}_R$ とかく、すると exact ; $0\to I\to R\to R/I\to 0$ をみて $\mathrm{depth}_R\,I\ge d-1$ をうる、もし、 $\dim R/I=d$ ならば $\mathrm{H}^d_\mathfrak{m}(I)\ne (0)$ であるから $(0)\ne \mathrm{Hom}_R(R/I,I)=(0)$ \vdots $I\subseteq (0)$ \vdots $I\subseteq (0)$ を見て矛盾。よって R/I は a (d-1)- dim C-M ring である。そして

$$0 \longrightarrow \operatorname{Hom}_R(R,I) \longrightarrow \operatorname{Hom}_R(K_R,K_R) \longrightarrow \operatorname{Ext}^1_R(R/I,I) \longrightarrow 0$$
 exact

をみて
$$r(R/I) = \mu\left(\operatorname{Ext}_R^1(R/I,I)\right) = 1$$
 をうるので R/I は a Gorenstein local ring である.

次に述べる定理も重要なものであるが、その証明は Lemma 3.21 を見ればほとんど明らかである.

Theorem 2.1.28. $(R,\mathfrak{m}) \xrightarrow{\varphi} (S,\mathfrak{n})$ を a flat local homomorphism of C-M local rings とし $(0) \neq M \in \underline{\underline{\mathbb{M}}}(R)$ とする. このとき次の条件は同値である.

- $(1) \stackrel{\exists}{} K_S \cong S \otimes_R M.$
- (2) $S/\mathfrak{m}S$ \sharp a Gorenstein local ring, $M = K_R$.

Corollary 2.1.29. $(R,\mathfrak{m}) \stackrel{\varphi}{\to} (S,\mathfrak{n})$ を a flat local homomorphism of C-M rings とする. ${}^{\exists}K_R. \Rightarrow S/\mathfrak{m}S$ は a Gorenstein local ring である.

ここで (A,\mathfrak{m}) を a Noetherian local ring, $M\in\underline{\underline{\underline{M}}}(R)$ とする。今 $r=\mu_R(M)$ とすると、 $\exists \mathrm{exact};\ R^{(r)}\to M\to 0$ であるから $\forall P\in\mathrm{Supp}_R M$ をとると $R_P^{(r)}\to M_P\to 0$ は exact である。従って、 $\mu_{R_P}(M_P)\le \mu_R(M)$ for $\forall P\in\mathrm{Supp}_R M$ であることが確かめられる。よって

Theorem 2.1.30. M を an s-dim C-MR-module とせよ. $\forall P \in \operatorname{Supp}_R M$ に対して $\operatorname{r}(M_P) \leq \operatorname{r}(M)$ をみたす.

Proof. $\,^{\forall}Q$ \in $\mathrm{Ass}_{\widehat{R}}\,\widehat{R}/P\widehat{R}$ をとる. $\mathrm{r}\left(\widehat{M}_Q\right)=\mathrm{r}(M_P)\,\mathrm{r}\left(\widehat{R}_Q/P\widehat{R}_Q\right)$ であるから $\mathrm{r}(M_P)\leq\mathrm{r}\left(\widehat{M}_Q\right)$ である. よって $R=\widehat{R}$ として $\mathrm{r}(M_Q)\leq\mathrm{r}(M)$ を証明すれば十分である.

$$s = \dim M_Q + \dim R/Q$$
$$d = \dim R_Q + \dim R/Q$$

であるから $\dim R_Q - \dim M_Q = d - s$ をうる.

$$\therefore \quad \mathrm{r}(M_Q) = \mu\left(\mathrm{Ext}_R^{d-s}\left(M_Q, \mathrm{K}_{R_Q}\right)\right) = \mu\left(R_Q \otimes_R \mathrm{Ext}_R^{d-s}\left(M, \mathrm{K}_R\right)\right) \leq \mu\left(\mathrm{Ext}_R^{d-s}\left(M, \mathrm{K}_R\right)\right) = \mathrm{r}(M).$$