On the Glauberman-Watanabe corresponding blocks as bimodules

Fuminori Tasaka

1. Let p be a prime. Let \mathcal{O} be a complete discrete valuation ring having an algebraically closed residue field of characteristic p and having a quotient field \mathcal{K} of characteristic zero which will be assumed to be "large enough". Below, modules are finitely generated \mathcal{O} -free modules.

2. Let b be a (p-)block (*idempotent*) of a finite group G (that is, a primitive idempotent of the center $Z(\mathcal{O}G)$ of the group algebra $\mathcal{O}G$ of G over \mathcal{O}) with a defect group D. (Here, a *defect group* of b is a minimal subgroup D of G such that any $\mathcal{O}Gb$ -module M is isomorphic to a direct summand of $T\uparrow_D^G$ for some $\mathcal{O}D$ -module T.) By the action $g_1 \cdot x \cdot g_2 = g_1 x g_2$ where $g_1, g_2 \in G$ and $x \in \mathcal{O}G$, block (algebra) $\mathcal{O}Gb$ is an indecomposable ($\mathcal{O}G, \mathcal{O}G$)-bimodule.

3. As is usual way, we do not distinguish an $(\mathcal{O}G_1, \mathcal{O}G_2)$ -bimodule X and an $\mathcal{O}[G_1 \times G_2]$ -module X for two groups G_1 and G_2 by $g_1 \cdot m \cdot g_2 = (g_1, g_2^{-1}) \cdot x$ where $g_1 \in G_1, g_2 \in G_2$ and $x \in X$. Then $\mathcal{O}Gb$ is an indecomposable $\mathcal{O}[G \times G]$ -module with a vertex $\Delta D = \{(d, d) \mid d \in D\}$, see [NT]. (Here, a *vertex* of an indecomposable $\mathcal{O}L$ -module N for a group L is a minimal subgroup P of L such that N is isomorphic to a direct summand of $U \uparrow_P^L$ for some $\mathcal{O}P$ -module U).

4. For a subgroup H of G containing $N_G(D)$, Brauer corresponding block (see [NT]) $\mathcal{O}Hc$ of H viewed as as a bimodule can be characterized as a unique direct summand of $\mathcal{O}Gb\downarrow_{H\times H}^{G\times G}$ with a vertex ΔD , and $\mathcal{O}Gb$ viewed as a bimodule can be characterized as a unique direct summand of $\mathcal{O}Hc\uparrow_{H\times H}^{G\times G}$ with a vertex ΔD , see [NT]. That is, Brauer corresponding blocks viewed as bimodules are the Green corresponding (see [NT]) modules.

5. Let q be a prime such that $q \neq |G|$. Let S be a cyclic group of order q acting on G. Then with this action, we can consider the semi-direct product of G and S, denoted by GS. Let \ddot{S} be a subgroup of $S \times S (\subset GS \times GS)$ such that the canonical projections $S \times S \to S \times 1$ and $S \times S \to 1 \times S$ are isomorphisms. Denote by G^S the centralizer of S in G.

6. Glauberman showed that for an S-invariant irreducible \mathcal{K} -character χ , there is a unique irreducible \mathcal{K} -character $\pi(G, S)(\chi)$ of G^S such that $\pi(G, S)(\chi)$ is a constituent of $\chi \downarrow_{G^S}^G$ with a multiplicity not divisible by q (in fact, its multiplicity is ± 1 modulo q), and $\pi(G, S)$ gives a one-to-one correspondence, called the *Glauberman correspondence*, between the set $\operatorname{Irr}(G)^S$ of S-invariant irreducible \mathcal{K} -characters of G and the set $\operatorname{Irr}(G^S)$ of irreducible \mathcal{K} -characters of G^S . Note that χ is a unique S-invariant constituent of $\pi(G,S)(\chi)\uparrow_{G^S}^G$ with a multiplicity not divisible by q. For a precise statement, see [G]. 7. Assume that b is S-invariant and a defect group D of b is centralized by S. Then Watanabe showed that all irreducuble \mathcal{K} -characters in b ($\chi \in \operatorname{Irr}(G)$ is in b if a $\mathcal{K}G$ -module affording χ is not annihilated by b) are Sinvariant, that is, $\operatorname{Irr}(b) = \operatorname{Irr}(b)^S$, and there is a block w(b) of G^S , called the Glauberman-Watanabe corresponding block of b, with a defect group D such that $\operatorname{Irr}(w(b)) = \{\pi(G, S)(\chi) \mid \chi \in \operatorname{Irr}(b)\}$. For a precise statement, see [W].

8. As in 4 for the Brauer corresponding blocks, we can characterize the Glauberman-Watanabe corresponding blocks viewed as bimodules in terms of a vertex and a multiplicity as a direct summand of a restricted or an induced module from the block. Note that when G^S contains $N_G(D)$, the Glauberman-Watanabe corresponding block coincids with the Brauer corresponding block and the characterization in Theorem below is compatible with the one for the Brauer corresponding blocks in 4.

Theorem

- (1) $\mathcal{O}G^{S}w(b)$ is a unique indecomposable direct summand of $\mathcal{O}Gb\downarrow_{G^{S}\times G^{S}}^{G\times G}$ with a vertex ΔD and with a multiplicity not divisible by q. In fact, its multiplicity is 1 modulo q.
- (2) $\mathcal{O}Gb$ is a unique \ddot{S} -invariant indecomposable direct summand of $\mathcal{O}G^{S}w(b)\uparrow_{G^{S}\times G^{S}}^{G\times G}$ with a vertex ΔD and with a multiplicity not divisible by q. In fact, its multiplicity is 1 modulo q.

References

- [G] G. Glauberman: Correspondence of characters for relatively prime operator groups, Canad. J. Math. 20 (1968), 1465–1488
- [NT] H. Nagao, Y. Tsushima: Representations of Finite Groups, Academic Press, Boston, 1989.
- [T] F. Tasaka: A note on the Glauberman-Watanabe corresponding blocks as bimodules (preprint)
- [W] A. Watanabe: The Glauberman character correspondence and perfect isometries for blocks of finite groups, J. Algebra 216 (1999), 548–565