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Abstract. Gorenstein Fano polytopes arising from finite posets will be introduced.

Then we study the problem of which posets yield smooth Fano polytopes.

Introduction

An integral (or lattice) polytope is a convex polytope all of whose vertices have integer
coordinates. Let P ⊂ Rd be an integral convex polytope of dimension d.

• We say that P is a Fano polytope if the origin of Rd is a unique integer point
belonging to the interior of P.

• A Fano polytope P is called terminal if each integer point belonging to the bound-
ary of P is a vertex of P.

• A Fano polytope P is called canonical if P is not terminal, i.e., there is an integer
point belonging to the boundary of P which is not a vertex of P.

• A Fano polytope is called Gorenstein if its dual polytope is integral. (Recall that
the dual polytope P∨ of a Fano polytope P is the convex polytope which consists
of those x ∈ Rd such that ⟨x, y⟩ ≤ 1 for all y ∈ P, where ⟨x, y⟩ is the usual inner
product of Rd.)

• A Q-factorial Fano polytope is a simplicial Fano polytope, i.e., a Fano polytope
each of whose faces is a simplex.

• A smooth Fano polytope is a Fano polytope such that the vertices of each facet
form a Z-basis of Zd.

Thus in particular a smooth Fano polytope is Q-factorial Fano, Gorenstein and terminal.
Øbro [0] succeeded in finding an algorithm which yields the classification list of the

smooth Fano polytopes for given d. It is proved in Casagrande [0] that the number of
vertices of a Gorenstein Q-factorial Fano polytope is at most 3d if d is even, and at most
3d − 1 if d is odd. B. Nill and M. Øbro [0] classified the Gorenstein Q-factorial Fano
polytopes of dimension d with 3d − 1 vertices. Gorenstein Fano polytopes are classified
when d ≤ 4 by Kreuzer and Skarke [0], [0]. The study on the classification of terminal or
canonical Fano polytopes was done by Kasprzyk [0].

In this talk, given a finite poset P we introduce a terminal Gorenstein Fano polytope
XP . Then we study the problem of which posets yield Q-factorial Fano polytopes. Finally,
it turns out that the Fano polytope XP is smooth if and only if XP is Q-factorial.
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1. Fano polytopes arising from finite posets

Let P = {y1, . . . , yd} be a finite poset and P̂ = P ∪{0̂, 1̂}, where 0̂ (resp. 1̂) is a unique
minimal (resp. maximal) element of P̂ with 0̂ ̸∈ P (resp. 1̂ ̸∈ P ). Let y0 = 0̂ and yd+1 = 1̂.
We say that e = {yi, yj}, where 0 ≤ i, j ≤ d + 1 with i ̸= j, is an edge of P̂ if e is an
edge of the Hasse diagram of P̂ . (The Hasse diagram of a finite poset can be regarded as
a finite undirected graph.) In other words, e = {yi, yj} is an edge of P̂ if yi and yj are
comparable in P̂ , say, yi < yj , and there is no z ∈ P with yi < z < yj .

Definition 1.1. Let P̂ = {y0, y1, . . . , yd, yd+1} be a finite poset with y0 = 0̂ and yd+1 = 1̂.
Let ei, i = 1, . . . , d, denote the ith canonical unit coordinate vector of Rd. Given an edge
e = {yi, yj} of P̂ with yi < yj , we define ρ(e) ∈ Rd by setting

ρ(e) = ei − ej for 0 ≤ i, j ≤ d + 1,

where e0 = ed+1 = 0. Moreover, we write XP ⊂ Rd for the convex hull of the finite set

{ ρ(e) : e is an edge of P̂ }.

Example 1.2. Let P = {y1, y2, y3} be the finite poset with the partial order y1 < y2.
Then P̂ together with ρ(e)’s and XP are drawn below:
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XP =

Lemma 1.3. The convex polytope XP is a terminal Gorenstein Fano polytope.
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2. When is XP Q-factorial?

Let P = {y1, . . . , yd} be a finite poset and P̂ = P ∪ {y0, yd+1}, where y0 = 0̂ and
yd+1 = 1̂. A sequence Γ = (yi1 , yi2 , . . . , yim) is called a path in P̂ if Γ is a path in the
Hasse diagram of P̂ . In other words, Γ = (yi1 , yi2 , . . . , yim) is a path in P̂ if yij ̸= yik

for all 1 ≤ j < k ≤ m and if {yij , yij+1} is an edge of P̂ for all 1 ≤ j ≤ m − 1. In
particular, if {yi1 , yim} is also an edge of P̂ , Γ is called a cycle. The length of a path
Γ = (yi1 , yi2 , . . . , yim) is ℓ(Γ) = m − 1, while the length of a cycle is m.

A path Γ = (yi1 , yi2 , . . . , yim+1) is called ranked if

♯{ j : yij < yij+1 , 1 ≤ j ≤ m } = ♯{ k : yik > yik+1
, 1 ≤ k ≤ m }.

Given a ranked path Γ = (yi1 , yi2 , . . . , yim), there exists a unique function

µΓ : {yi1 , yi2 , . . . , yim} → {0, 1, 2, . . .}

such that

• µΓ(yij+1) = µΓ(yij ) + 1 (resp. µΓ(yij ) = µΓ(yij+1) + 1) if yij < yij+1 (resp. yij >

yij+1);
• min{µΓ(yi1), µΓ(yi2), . . . , µΓ(yim)} = 0.

In particular, Γ is ranked if and only if µΓ(yi1) = µΓ(yim).
Similary, a ranked cycle is defined. Given a ranked cycle C, there exists a unique

function µC which is defined the same way as above.

Example 2.1. Among the two paths and three cycles drawn below, each of one path
and two cycles on the left-hand side is ranked; none of one path and one cycle on the
right-hand side is ranked.

Let P be a finite poset. A subset Q of P is called a chain of P if Q is a totally ordered
subset of P . The length of a chain Q is ℓ(Q) = ♯(Q) − 1. A chain Q of P is saturated if
x, y ∈ Q with x < y, then there is no z ∈ P with x < z < y. A maximal chain of P̂ is a
saturated chain Q of P̂ with {0̂, 1̂} ⊂ Q. Let y, z ∈ P with y < z. The distance of y and
z in P̂ is the smallest integer s for which there is a saturated chain Q = {z0, z1, . . . , zs}
with

y = z0 < z1 < · · · < zs = z.

Let distP̂ (y, z) denote the distance of y and z in P̂ .
We now come to the main theorem.

Theorem 2.2. Let P = {y1, . . . , yd} be a finite poset and P̂ = P ∪ {y0, yd+1}, where
y0 = 0̂ and yd+1 = 1̂. Then the following conditions are equivalent:

(i) XP is Q-factorial;
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(ii) XP is smooth;
(iii) P̂ possesses no ranked path Γ = (yi1 , . . . , yim) with yi1 = y0 and yim = yd+1 such

that

µΓ(yia) − µΓ(yib) ≤ distP̂ (yib , yia)(1)

for all 1 ≤ a, b ≤ m with yib < yia, and no ranked cycle C = (yi1 , . . . , yim) with
{y0, yd+1} ̸⊂ {yi1 , yi2 , . . . , yim} such that

µC(yia) − µC(yib) ≤ distP̂ (yib , yia)(2)

for all 1 ≤ a, b ≤ m with yib < yia, and

µC(yia) − µC(yib) ≤ distP̂ (y0, yia) + distP̂ (yib , yd+1)(3)

for all 1 ≤ a, b ≤ m.

Recall that a finite poset P is pure if all maximal chains of P̂ have the same length.

Corollary 2.3. Suppose that a finite poset P is pure. Then the following conditions are
equivalent:

(i) XP is Q-factorial;
(ii) XP is smooth;
(iii) P is a disjoint union of chains.

Example 2.4. Among the five posets drawn below, each of the three posets on the left-
hand side yields a Q-factorial Fano polytope; none of the two posets on the right-hand
side yields a Q-factorial Fano polytope.

Let P and P ′ be finite partially ordered sets. Then one can verify easily that XP is
isomorphic with XP ′ as a convex polytope if and only if P is isomorphic with P ′ or with
the dual finite partially ordered set of P ′ as a finite partially ordered set.

On the following table drawn below, the number of finite partially ordered sets with
d(≤ 8) elements, up to isomorphic and up to isomorphic with dual finite partially ordered
sets, is written in the second row. Moreover, among those, the number of finite partially
ordered sets constructing smooth Fano polytopes is written in the third row.

d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7 d = 8
Posets 1 2 4 12 39 184 1082 8746
Smooth 1 2 3 6 12 31 83 266
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