FROBENIUS CONDITION ON A PRETRIANGULATED CATEGORY

HIROYUKI NAKAOKA

As shown in [H], from any Frobenius exact category, we can construct a triangulated category as a stable category. On the other hand, it was shown in [IY] that if a pair of subcategories $\mathcal{D} \subseteq \mathcal{Z}$ in a triangulated category satisfies certain conditions (namely, $(\mathcal{Z}, \mathcal{Z})$ is a \mathcal{D} -mutation pair), then \mathcal{Z}/\mathcal{D} becomes a triangulated category. In this talk, we will make a simultaneous generalization of these two constructions.

We define a pretriangulated category as a quintet $(\mathcal{C}, \Sigma, \Omega, \triangleleft, \triangleright)$ of an additive category \mathcal{C} , additive endofunctors $\Omega, \Sigma: \mathcal{C} \to \mathcal{C}$, and classes of right and left triangles $\triangleright, \triangleleft$, satisfying some conditions similar to those in [BR]. We often represent a pretriangulated category simply by \mathcal{C} . With this definition, a triangulated category is a pretriangulated category with $\Omega \cong \Sigma^{-1}$, and any abelian category can be regarded as a pretriangulated category satisfying $\Sigma = \Omega = 0$.

In a pretriangulated category, we can define a short exact sequence

$$\Omega C \to A \to B \to C \to \Sigma A,$$

which generalize a short exact sequence in an abelian category and a distinguished triangle in a triangulated category. With this definition, we can consider *extension*-closedness of a subcategory $\mathcal{Z} \subseteq \mathcal{C}$.

For a triplet $(\mathcal{C}, \mathcal{Z}, \mathcal{D})$ of a pretriangulated category \mathcal{C} , an extension-closed subcategory $\mathcal{Z} \subseteq \mathcal{C}$ and a subcategory $\mathcal{D} \subseteq \mathcal{Z}$ satisfying $\mathcal{C}(\mathcal{Z}, \Sigma \mathcal{D}) = \mathcal{C}(\Omega \mathcal{D}, \mathcal{Z}) = 0$, we can define the class of *injective objects* \mathcal{I} and that of *projective objects* \mathcal{P} .

	Happel's construction [H]	Iyama and Yoshino's construction [IY]
\mathcal{C}	abelian category	triangulated category
\mathcal{Z}	exact subcategory	extension-closed subcategory
\mathcal{D}	$\mathcal{Z} = \mathcal{D}$	$(\mathcal{Z}, \mathcal{Z})$: \mathcal{D} -mutation pair
\mathcal{I}	injective objects	$\mathcal{I}{=}\mathcal{D}$
\mathcal{P}	projective objects	$\mathcal{P}=\mathcal{D}$

We impose 'Frobenius condition' (including $\mathcal{I} = \mathcal{P} =: \mathcal{F}$) on the triplet $(\mathcal{C}, \mathcal{Z}, \mathcal{D})$, and will show the following.

Theorem. Let \mathcal{C} be a pretriangulated category, $\mathcal{Z} \subseteq \mathcal{C}$ be an extension-closed subcategory, and $\mathcal{D} \subseteq \mathcal{Z}$ be a triangulator. If $(\mathcal{C}, \mathcal{Z}, \mathcal{D})$ is Frobenius, then \mathcal{Z}/\mathcal{F} becomes a triangulated category.

References

- [BR] Beligiannis, A; Reiten, I: Homological and homotopical aspects of torsion theories. (English summary) Mem. Amer. Math. Soc. 188 (2007), no. 883, viii+207 pp.
- [H] Happel, D: Triangulated categories in the representation theory of finite-dimensional algebras. London Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988. x+208 pp.
- [IY] Iyama, O; Yoshino, Y: Mutation in triangulated categories and rigid Cohen-Macaulay modules. (English summary) Invent. Math. 172 (2008), no. 1, 117–168.

E-mail address, Hiroyuki NAKAOKA: deutsche@ms.u-tokyo.ac.jp