Reflection for Brauer trees

Hiroki ABE

In [1], reflection functors which introduced in [2] led to APR-tilting modules. In [3], APR-tilting modules were generalized to the following. Let Λ be a finite dimensional algebra over a field K and P_1, \dots, P_n a complete set of nonisomorphic indecomposable projective modules in mod- Λ , the category of finitely generated right Λ -modules. We set $I = \{1, \dots, n\}$. Assume that there exists a simple module $S \in \text{mod-}\Lambda$ satisfying $\text{Hom}_{\Lambda}(D\Lambda, S) = 0$ and $\operatorname{Ext}^{1}_{\Lambda}(S,S) = 0$, where $D = \operatorname{Hom}_{K}(-,K)$. Let P_{t} be the projective cover of S. For $t \in I$, we set $T = \left(\bigoplus_{i \in I \setminus \{t\}} P_i\right) \oplus \tau^{-1}S$, where τ denotes the Auslander-Reiten translation. Then T is a tilting module of Λ which is called a BB-tilting module. Furthermore, in terms of derived equivalences, we know the following. We take a minimal injective presentation $0 \to S \to E^0 \xrightarrow{f} E^1$ and define a complex E^{\bullet} as the mapping cone of the homomorphism $f: E^0 \to E^1$. Then the complex $\operatorname{Hom}^{\bullet}_{\Lambda}(D\Lambda, E^{\bullet})$ is a minimal projective resolution of $\tau^{-1}S$ and hence $T^{\bullet} = \left(\bigoplus_{i \in I \setminus \{t\}} P_i\right) \oplus \operatorname{Hom}^{\bullet}_{\Lambda}(D\Lambda, E^{\bullet})$ is a tilting complex of Λ . Now, we assume that Λ is selfinjective. Then we know that T^{\bullet} is trivial. In this talk, we will show that if $\operatorname{Hom}_{\Lambda}(D\Lambda, S) \cong S$ and $\operatorname{Ext}^{1}_{\Lambda}(S, S) = 0$, then $T^{\bullet} = \left(\bigoplus_{i \in I \setminus \{t\}} P_i\right) \oplus \operatorname{Hom}^{\bullet}_{\Lambda}(D\Lambda, E^{\bullet}) \cong \left(\bigoplus_{i \in I \setminus \{t\}} P_i\right) \oplus E^{\bullet} \text{ is a tilting complex of } \Lambda. \text{ We call the derived equivalence induced by } T^{\bullet} \text{ the reflection for } \Lambda.$ Our main aim is to decide the transformations of Brauer trees given by the reflection.

References

- M. Auslander, M. I. Platzeck and I. Reiten, Coxeter functors without diagrams, Trans. Amer. Math. Soc., 250 (1979), 1–46.
- [2] I. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, Coxeter functors and Gabriel's theorem, Uspechi Mat. Nauk., 28 (1973), 19–38 = Russian Math. Surveys 28 (1973), 17–32.
- [3] S. Brenner and M. C. R. Butler, Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, in: *Representation theory II*, 103–169, Lecture Notes in Math., 832, Springer, 1980.